1,238 research outputs found

    Global Star Formation Rate Density over 0.7<z<1.9

    Get PDF
    We determine the global star formation rate density at 0.7<z<1.9 using emission-line selected galaxies identified in Hubble Space Telescope Near Infrared Camera and Multi-Object Spectrograph (HST-NICMOS) grism spectroscopy observations. Observing in pure parallel mode throughout HST Cycles 12 and 13, our survey covers ~104 arcmin2 from which we select 80 galaxies with likely redshifted Ha emission lines. In several cases, a somewhat weaker [OIII] doublet emission is also detected. The Ha luminosity range of the emission-line galaxy sample is 4.4 x 10^41 < L(Ha) < 1.5 x 10^43 erg/s. In this range, the luminosity function is well described by a Schechter function with phi* = (4.24\pm3.55) x 10^-3 Mpc^-3, L* = (2.88\pm1.58) x 10^42 erg/s, and alpha = -1.39\pm0.43. We derive a volume-averaged star formation rate density of 0.138\pm0.058 Msun/yr/Mpc3 at z=1.4 without an extinction correction. Subdividing the redshift range, we find star formation rate densities of 0.088\pm0.056 Msun/yr/Mpc3 at z=1.1 and 0.265\pm0.174 Msun/yr/Mpc3 at z=1.6. The overall star formation rate density is consistent with previous studies using Ha when the same average extinction correction is applied, confirming that the cosmic peak of star formation occurs at z>1.5.Comment: Accepted for publication in Ap

    The Papers of Henry Clay. Volume 1. The Rising Statesman, 1797-1814

    Get PDF
    Henry Clay’s career spanned a half century of a great formative period in American history. The Papers of Henry Clay span the crucial first half of the nineteenth century in American history. Few men in his time were so intimately concerned with the formation of national policy, and few influenced so profoundly the growth of American political institutions. This compilation of ten volumes includes Clay’s letters, letters to Clay, his speeches, and other documents identified as his personal composition. Publication of this book was assisted by a grant from the National Historical Publications and Records Commission.https://uknowledge.uky.edu/upk_political_science_papers/1000/thumbnail.jp

    A physical model for the origin of the diffuse cosmic infrared background

    Full text link
    We present a physical model for origin of the cosmic diffuse infrared background (CDIRB). By utilizing the observed stellar mass function and its evolution as input to a semi-empirical model of galaxy formation, we isolate the physics driving diffuse IR emission. The model includes contributions from three primary sources of IR emission: steady-state star formation owing to isolated disk galaxies, interaction-driven bursts of star formation owing to close encounters and mergers, and obscured active galactic nuclei (AGN). We find that most of the CDIRB is produced by equal contributions from objects at z=0.5-1 and z>1, as suggested by recent observations. Of those sources, the vast majority of the emission originates in systems with low to moderate IR luminosities (L_{IR}<10^{12} $L_sun); the most luminous objects contribute significant flux only at high-redshifts (z>2). All star formation in ongoing mergers accounts for <10% of the total at all wavelengths and redshifts, while emission directly attributable to the interaction-driven burst itself accounts for <5%. We furthermore find that obscured AGN contribute <1-2% of the CDIRB at all wavelengths and redshifts, with a strong upper limit of less than 4% of the total emission. Finally, since electron-positron pair production interactions with the CDIRB represent the primary source of opacity to very high energy (VHE: E_\gamma > 1 TeV) \gamma-rays, the model provides predictions for the optical depth of the Universe to the most energetic photons. We find that these predictions agree with observations of high-energy cutoffs at TeV energies in nearby blazars, and suggest that while the Universe is extremely optically thick at >10 TeV, the next generation of VHE \gamma-ray telescopes can reasonably expect detections from out to 50-150 Mpc.Comment: 14 pages, 13 figures, submitted to MNRA

    Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs

    Get PDF
    Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene

    Breaking the sigma_8-Omega_m degeneracy using the clustering of high-z X-ray AGN

    Full text link
    The clustering of X-ray selected AGN appears to be a valuable tool for extracting cosmological information. Using the recent high-precision angular clustering results of ~30000 XMM-Newton soft (0.5-2 keV) X-ray sources (Ebrero et al. 2009), which have a median redshift of z1z\sim 1, and assuming a flat geometry, a constant in comoving coordinates AGN clustering evolution and the AGN bias evolution model of Basilakos et al. (2008), we manage to break the Omega_m-sigma_8 degeneracy. The resulting cosmological constraints are: Omega_m=0.27 (+0.03 -0.05), w=-0.90 (+0.10 -0.16) and sigma_8=0.74 (+0.14 -0.12), while the dark matter host halo mass, in which the X-ray selected AGN are presumed to reside, is M=2.50 (+0.50 -1.50) X 10^13 h^{-1} M(solar). For the constant Lambda model (w=-1) we find Omega_m=0.24 (+- 0.06) and sigma_8=0.83 (+0.11 -0.16), in good agreement with recent studies based on cluster abundances, weak lensing and the CMB, but in disagreement with the recent bulk flow analysis.Comment: Accepted in ApJ. Lett

    Further Developments of BEM for Micro and Macromechanical Analyses of Composites: Boundary Element Software Technology-Composite User's Manual

    Get PDF
    BEST-CMS (Boundary Element Solution Technology - Composite Modeling System) is an advanced engineering system for the micro-analysis of fiber composite structures. BEST-CMS is based upon the boundary element program BEST3D which was developed for NASA by Pratt and Whitney Aircraft and the State University of New York at Buffalo under contract NAS3-23697. BEST-CMS presently has the capabilities for elastostatic analysis, steady-state and transient heat transfer analysis, steady-state and transient concurrent thermoelastic analysis and elastoplastic and creep analysis. The fibers are assumed to be perfectly bonded to the composite matrix, or in the case of static or steady-state analysis, the fibers may be assumed to have spring connections, thermal resistance, and/or frictional sliding between the fibers and the composite matrix. The primary objective of this User's Manual is to provide an overview of all BEST-CMS capabilities, along with detailed descriptions of the input data requirements. A brief review of the theoretical background is presented for each analysis category. Then, Chapter 3 discusses the key aspects of the numerical implementation, while Chapter 4 provides a tutorial for the beginning BEST-CMS user. The heart of the manual, however, is in Chapter 5, where a complete description of all data input items is provided. Within this chapter, the individual entries are grouped on a functional basis for a more coherent presentation. Chapter 6 includes sample problems and should be of considerable assistance to the novice. Chapter 7 includes capsules of a number of fiber-composite analysis problems that have been solved using BEST-CMS. This chapter is primarily descriptive in nature and is intended merely to illustrate the level of analysis that is possible within the present BEST-CMS system. Chapter 8 contains a detailed description of the BEST-CMS Neutral File which is helpful in writing an interface between BEST- CMS and any graphic post-processor program. Finally, all pertinent references are listed in Chapter 9

    Reference to index of ledger of the High School of Hobart Town 1850 - 1851.

    Get PDF
    The School was founded in 1848 by a group of gentleman connected with the Prestbyterian and free churches including Rev. Dr. John Lillie, Minister of St. Andrews Church, Chairman of the Council, T.D.Chapman, who succeeded Lillie as Chairman of the Council of Shareholders, R.W.Nutt, Henry Hopkins, G.W.Walker, R. Officer and W. Robertson, who acted as treasurer.The object of the High School, as originally described,was 'the instruction of youth in the higher brances of learning, as taught in superior classical and mathematical schools in England', the ultimate object being 'to confer on Australian youth the inestimable advantages of an European University'. The school opened in 1850 and 56 boys were enrolled in the first quarter. The number had increased to 81 at the beginning of 1851. By 1859 boarders were being taken and a junior department had been started.In 1885 the rights to the school were handed over to the Christ College Trust and the school became Christ College, surprisingly as J.P.Gell the first Warden of Christ's College originally opposed the foundation of the High School. The Christ College School in fact merged with the Hutchins School and in 1892 the High School building was sold to the new University of Tasmania
    corecore